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Abstract

In this study we conducted three-dimensional dynamic analyses of long-span box girder bridges subjected to moving
loads, using four-node Lagrangian and Hermite finite elements. In finite element formulation, a 6 · 6 transformation
matrix is derived to transform the system element matrices before assembly. The usual 5 degrees of freedom per node
are appended with an additional drilling degree of freedom in order to fit the transformation. The numerical results
show good agreement with the experimental data from an existing two-span prestressed concrete box girder bridge
under travelling vehicles. Parametric studies are focused on the various effects of moving loads on the dynamic behavior
for different locations on the cross-section of box girder bridges.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The trend of urban expansion accelerated by rapid industrialization has indirectly affected the transpor-
tation vehicles causing a steady increase in their sizes. In order to achieve higher efficiency rates, increas-
ingly larger transportation vehicles are manufactured. This situation however, has raised the major issue
of the capabilities of current bridges in meeting the prevalent demands. Specifically, bridges are subjected
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to larger loads than they were originally designed for, which accelerates their deterioration and eventually,
their failure, signaling the need for bridges with higher capacities. Bridges with closed sections have many
advantages over the traditional I-girder bridges, as they offer higher bending and torsional stiffness. For
these reasons, box girder bridges have gained popularity as can be seen in their widespread usage in recent
constructions.

Theoretical and experimental studies of the dynamic behavior of bridges subject to moving vehicles have
been conducted for more than 100 years. Theoretically, the problem of a moving load was first tackled for
the case in which the beam mass was considered small in comparison with the mass of a single, constant
load. The original approximate solution was proposed by Willis (1849) and Stokes (1849), one of the early
experimenters in the field. In the 20th century, vibration of beam as a result of moving loads were studied in
idealized vibrations of the railway bridges by Timoshenko (1922), Jeffcott (1929), Lowan (1935), and Loo-
ney (1958). Biggs (1959) conducted several field investigations, and theoretical studies related to the dy-
namic behavior of bridges using one idealized beam and considering the basic vibration mode and
viscous damping. Veletsos and Huang (1970) analyzed a three-span continuous bridge, studying effects
of various parameters such as the vehicle velocity, axle spacing, weight ratio of the vehicle and the bridge,
and dynamic characteristics of the vehicles. Recently, various researches have been conducted on vehicle-
induced vibrations of bridges (Chatterjee et al., 1994; Chu et al., 1986; Hwang and Nowark, 1991; Tham-
biratnam et al., 2000; Yang and Yau, 1997).

However, all these works are limited, since they analyze only structures that are idealized by a beam
member. In the case of box girders, the simplified analysis with idealized beam elements is based on the
assumption that the cross-section of the box girder subjected to loads necessarily sustains its original shape.
This simplified analysis cannot definitely specify the structural behavior at the cross-section of the box gir-
der. Cheung (1969) introduced the finite strip method (FSM) for the analysis of folded prismatic plates and
box girders under the effect of moving mass. In general, if a plate structure has constant cross-section and
its end support condition does not change transversely, the finite strip method can accurately describe the
kinematic behavior of a box girder bridge (Maleki, 1991; Senthilvasan et al., 2002). However, if the struc-
ture has irregularities, e.g. a rectangular plate with openings, the FSM is no longer applicable (Cheung
et al., 1996). In addition, when the load is moving along the bridge, FSM cannot obtain accurate results
because the load application point must be taken as a node and a dense mesh is required around this point
(Cheung et al., 1996). In contrast, the finite element method (FEM) adopted in this study uses 6-DOF per
node including a drilling DOF and thus can yield more accurate results than the FSM for dynamic analysis
of the bridges under moving loads. Bathe (1996) and Zienkiewicz and Taylors (2000) presented FEM using
a flat shell element, which can be applied directly to folded plate structures. However, they do not consider
the dynamic effects of moving loads. In this paper, the existing FEM using flat shell elements is further ex-
tended to study the dynamic response of continuous box girder bridges subjected to moving loads. The
numerical results are verified by comparing them with measurement data obtained from experimental
works on a prestressed concrete box girder bridge.
2. Governing equations

The unfolded flat shell element with local 5-DOF per node can be obtained by superimposing the plate
bending on the plane stress behavior (Bathe, 1996). Fig. 1 shows a coordinate system and the components
of displacement and rotation. In Fig. 1, x, y, and z are directions for the local coordinate system, u(x,y, t)
and v(x,y, t) are displacements for the plane stress behavior at the point x, y and at time t. Moreover,
w(x,y, t), hx(x,y, t) and hy(x,y, t) are vertical displacement and rotations along x and y axes for the dy-
namic plate bending behavior, respectively. The governing equations for the plane stress behavior are
given by



Fig. 1. Coordinates, displacements and rotations of a plate element in the global coordinates.
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where E and m denote the moduli of elasticity and Poisson�s ratio, fx(x,y, t) and fy(x,y, t) are in-plane loads
per unit area for x, y-directions, and l is the mass density, respectively. The governing equation for plate
bending behaviors is written as
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where h is the plate thickness and fz(x,y, t) is the vertical load per unit area of the plate.
3. Finite element method

The FEM for analyzing unfolded plates reviewed in this study is derived from the formulation of Bathe
(1996). To analyze folded structures, we introduce a displacement finite element model using nonconform-
ing elements of 6-DOF including the modified drilling degree of freedom per node.

3.1. Unfolded flat shell element

In FEM, the governing equations described by Eqs. (1)–(3) require the Lagrange interpolation of (uj,vj)
and Hermite interpolation of (wj,hxj,hyj) at a node j of plate element. The displacements at any point within
the element can be expressed as
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where [I2] is a 2 · 2 identity matrix, Wj are Lagrange interpolation functions, and Uj, Uj,x and Uj,y are the
Hermite interpolation functions, and their first derivatives, respectively. The element stiffness matrix [K]e of
the unfolded plate element can be calculated by Eq. (5).
½K�e ¼
Z a

0

Z b

0

½B�T½D�½B�dxdy; ð5Þ
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where a and b are the dimensions of a rectangular plate, [B] is the strain–displacement matrix, and [D] is a
constitutive matrix. Alternatively, Eq. (5) can be rewritten in the natural coordinates (n,g) as
½K�r ¼
Z 1

�1

Z 1

�1

½B�T½D�½B� j J j dndg; ð6Þ
where [K]r is an element stiffness matrix in the natural coordinates, and jJj is a determinant of Jacobian
matrix. The strain–displacement matrix [B] in the coordinates (n,g) is given by
½B� ¼
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The mass matrix of the unfolded flat shell element is given by
½M �e ¼
Z a

0

Z b

0

l½H �T½H �dxdy ¼
Z 1

�1

Z 1

�1

l½H �T½H � j J j dndg; ð8Þ
where [H] is a matrix consisting of Lagrange and Hermite interpolation functions.

3.2. Folded flat shell element

It is known that the global stiffness matrix is singular or ill-conditioned because of the null diagonal
terms due to the drilling DOF (in-plane rotation, hz) in the transformed element stiffness matrix. As a result,
it is difficult to solve the global equilibrium equations. The hz at a node is not measured and does not con-
tribute to the strain energy stored in the element. To resolve this problem in a finite element analysis, Zien-
keiwicz and Taylor defined a fictious set of rotation stiffness coefficients in all element whether co-planar
or not. However, it has somewhat complicated formulations for different element shapes. On the other
hand, we artificially insert an in-plane rotation angle or alternatively rotational stiffness coefficients without
such assumed formulation. In our analysis, we add an appropriate sixth drilling DOF to the existing 5-DOF
system, as suggested by Lee et al. (2002). The appropriate coefficient is determined by static and dynamic
analyses in Section 4.1.

The deformations of each element expressed in the local coordinate can be transformed to the global
coordinates by using the following transformation relationship (see Fig. 2):
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where, lij are the direction cosines between the global and local coordinates, or, briefly,
fug ¼ ½T �fu0g ð10Þ



Fig. 2. Coordinate transformations for a folded plate element.
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and [T] is the transformation matrix. The primed notations in Eqs. (9) and (10) are used to denote the
deformations in local coordinates. The global stiffness matrix is then expressed as,
½K� ¼ ½T �T½Ks�½T �; ð11Þ

where
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½T � 0 0 0
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0 0 0 ½T �

2
6664

3
7775

24�24

½Ks� ¼
½K�r 0

0 ½K�d

� �
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Note that [K ]r and [K ]d are the real and artificial matrices consisting of 20 · 20 and 4 · 4 elements,
respectively. Before applying the transformation, the 20 · 20 matrix is reconstructed into a 24 · 24 matrix
in order to accommodate the drilling DOF (hz) per element. Transformation of the mass matrix is same as
that of the stiffness matrix, that is,
½M � ¼ ½T �T½Ms�½T �: ð13Þ
3.3. Moving load

In this study, Newmark�s explicit integration technique is adopted for the transient analysis of a box gir-
der bridge subjected to the effects of moving loads (Bathe, 1996). Consider a moving load with a velocity v
on a plate element. The total moving distance (m) of the load at time s + Ds (s) is
sþDsDs ¼
vDs
3:6

þ Cx2 ; ð14Þ
where Cx2 denotes the initial coordinate of the moving load in the longitudinal direction. The location num-
ber Id of the element which the moving load passes through at time s + Ds can be expressed as
sþDsId ¼ Nd
x1
Il þ Is þ 1; ð15Þ
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where
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Here, Nd
x1
and Nd

x2
are the number of division elements in the transverse and longitudinal direction, Cx1 is

the initial coordinate of the moving load in the transverse direction, Lx1 and Lx2 are the length of a plate in
both directions, and INT( ) means the integer part of value in a parenthesis, respectively.

The moving load vectors {Fk(s)} at an arbitrary location on the Nd
k th element of the plate should be inevi-

tably distributed to the nodal loads fRNk ðsÞg using the Hermite interpolation function [U]. The natural
coordinates (nk,gk) of the element for the moving load at time s + Ds can be derived as
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In a four-node element with 6 degrees of freedom per node, the moving load distributed into four neigh-
borhood nodes can be expressed as
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where j = i + 2 for i = 1, . . . , 3.
The total magnitude H of the external force applied on the plate at s + Ds can be obtained by summing

up the distributed N loads as given by
sþDsH ¼ sþDsHN1
þ sþDsHN2

þ 
 
 
 þ sþDsHNn : ð19Þ

In Newmark integration scheme the effective loads at time s + Ds can be calculated as
sþDsH ¼ sþDsH þ ½Ms�ðk0
sUþ k2

s _Uþ k3
s €UÞ: ð20Þ
The dynamic displacements U, accelerometers €U, and velocities _U at time s + Ds can be solved as
sþDsU ¼ ½Kg��1sþDsH; ð21Þ

sþDs _U ¼ k0ðsþDsU� sUÞ � k2
s _U� k3

€U; and sþDs _U ¼ s _U� k6
s €U� k7

sþDs €U; ð22Þ

where the triangularized effective stiffness matrix is ½Kg� ¼ ½Ks� þ k0½Ms�, k0, k2, k3, k6, and k7 are integration
constants in the Newmark integration method, respectively. A flow chart of the computational procedure
considering moving loads is shown in Fig. 3.
4. Numerical results

4.1. Drilling degree of freedom

The finite element formulation for determining the drilling DOF described earlier (Section 3.2) now
implemented to compare the results of our technique with those calculated by other investigators. For both
static and free vibration analyses, we determine by trial and error process the appropriate stiffness coeffi-
cient for the drilling DOF. The additional stiffness does in fact affect the result because it also occurs at



Fig. 3. Flow chart of a numerical dynamic analysis considering moving loads.
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nodes which are not co-planar and indeed the device represents an approximation. Therefore the optimal
stiffness ck should be determined by calculating displacements or natural frequencies for its different values.

Table 1 shows the maximum static vertical displacements of a continuous two-span box girder bridge
versus various artificial stiffnesses for the drilling DOF (ck = 101–1010). The properties of the box girder
bridge are E = 2.88 GPa, m = 0.2, and l = 2.5 kN/m3, respectively. The vehicle has a weight of 24.0 kN
for static analysis. For the purpose of comparison, we adopted a finite element package (LUSAS) (Fea
Ltd., 1996–2000) which uses a drilling rotational stiffness introduced by Zienkiewicz and Taylors (2000).
Table 1
Maximum static displacements for a continuous two-span box girder bridge for various values of ck (cm, LUSAS result = 0.873)

ck 101 102 103 104 105 106 107 108 109 1010

Displacement (cm) 1.146 1.145 1.136 1.071 0.946 0.897 0.891 0.891 0.890 0.890
Difference (%) 23.83 23.77 23.14 18.53 7.78 2.92 2.03 1.92 1.91 1.91
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From Table 1, it can be observed that the difference between the results of this study and those of LUSAS is
negligible for values of ck P 106.

Fig. 4 shows the natural frequencies of the continuous two-span box girder bridge as a function of vari-
ous artificial stiffnesses ck. The natural frequencies shown in Fig. 4 approach a constant value as the arti-
ficial stiffness increases, especially for ck > 106. It is interesting to note that the artificial stiffness value of
ck = 106 is appropriate to minimize the error caused by the drilling DOF for both the static and dynamic
analyses. Finally we use stiffness value of 106 for the drilling DOF on next stage.

4.2. Dynamic responses for various locations of cross-section

Fig. 5 shows the static and dynamic displacements of 2 · 60 = 120 m simply supported box girder bridge
subjected to a vehicle moving with the speed of 80 km/h and located at the midpoint of the deck. The prop-
erties of the bridge are the same as those described earlier and the moving vehicle has a weight of 24.0 kN.
From Fig. 5, it is observed that the dynamic displacements at DT1 and DT5 are noticeably larger than oth-
ers. In the detailed data, the responses at DT3 and are also slightly larger than those at DT2 and DT4. It
may be noted that the dynamic behavior have different characteristics along each locations on the cross-sec-
tion. In particular, from Fig. 5(a) the induced displacement at midpoint of slab (DT1) is extremely higher
than the others because the dynamic response is measured at the surface the loading point. In addition, it
may be observed that the displacements near 30.0 m become more dramatic than those at the other loading
points because the measuring point is same as the loading point. The one-dimensional analysis using beam
elements does not show the dynamic displacements across the cross-section of the box girder bridge. On the
other hand, the three-dimensional dynamic analysis using the flat shell elements proposed in this study can
determine the dynamic displacement regardless of the locations on the box cross-section. This is a signifi-
cant contribution of using the folded flat shell elements by enabling taking the detailed analysis of dynamic
responses.

Plots of the dynamic magnification factor (DMF) versus load velocity are shown in Fig. 6. It can be ob-
served that the DMF for various locations of the box girder changes from about 1.0 to 1.2 with the vari-
ation of velocity (10–120 km/h). The DMF values could be different for the different loads, geometrical
shapes of box girder, span length, the number of box cells, velocities of loads, measuring points, etc. In
the current American Association of State Highway and Transformation Officials (AASHTO) Standard
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Specifications for Highway Bridges, the dynamic effect is considered through an impact factor (AASHTO,
1996). The impact factor is computed on the basis of span length only. From Fig. 6, it is observed that the
DMF for DT5 is about 1.2, which is higher than the value (G1.15) calculated by the specifications. Because
the dynamic behavior of a bridge subjected to moving loads depend on the locations across the section,
velocity of the moving load, weight of vehicle, and the bridge type, more detailed standards that consider
the above mentioned effects of dynamic behaviors are required.
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5. Experimental verification

5.1. Experimental set-up

The finite element formulation described earlier has been implemented to compare the numerical results
with the experimental results. In this study, the selected experimental bridge is a newly built long-span
bridge across the Han River in Seoul, South Korea. The bridge is designed to sustain heavy traffics of
81,378 crossing vehicles per day. The bridge also consists of typical box sections constructed by incremental
launching method (ILM) and free cantilever method (FCM), which is appropriate for the verification of the
(a)

(b)

Fig. 7. Elevation and the cross-section of the box girder bridge used for the experimental verification: (a) elevation; (b) cross-section.
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finite element program developed in this study. The properties of the concrete for the bridge are the same as
those described earlier. The moving vehicle also has a weight of 24.0 kN. Fig. 7 shows the typical cross-sec-
tion of the experimental bridge and its locations for the measurement. In Fig. 7, DT1–DT5 denote the mea-
suring locations of dynamic responses at the cross-section. Fig. 8 also shows the dynamic test of the box
girder under the moving vehicles effects.

5.2. Comparison with numerical results

Fig. 9 shows the comparison between the data obtained from experiments and the numerical results
using folded flat shell and beam elements. In Figs. 9 and 10, the location of referred dynamic displacement
is at the center point of the span, and the vehicle moves from the starting point to the end point at the center
of the bridge deck. As shown in the figures, the results obtained from the experiment are in good agreement
with those obtained from the numerical analysis. It can be also observed from the figures that the ampli-
tudes of dynamic response obtained from experiments are somewhat irregular due to external effects such as
a roughness of the bridge deck. In addition, the different velocities of the moving load make small influence
on the vertical displacements at DT2 and DT3. However, in Figs. 9 and 10, it can be observed that the
Fig. 8. Experimental work for determination of the dynamic response of PSC box bridge subjected to moving vehicles: (a) dynamic test
for moving loads; (b) measurement of dynamic deflections.
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frequencies of the dynamic response of our bridge model are significantly different for the different moving
velocities. This phenomenon makes sense to us that the increased moving velocity makes greater contribu-
tion on the frequency of dynamic response than the vertical displacement.

The displacements using the beam elements were larger than those computed using flat shell element
analysis when the moving load is located at the second span of the bridge. It can be observed from the fig-
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Fig. 10. Dynamic responses at DT3 from experiment, finite element analysis using folded flat shell elements and beam elements for
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ures that the differences in maximum displacement vary from about 10% to 15% from experimental data. In
the one-dimensional dynamic analysis using the existing beam element, it is not possible to determine sep-
arately from DT1 to DT5. On the other hand, the three-dimensional dynamic analysis using the flat shell
element can determine the dynamic displacement for all locations of the box section. Therefore, the dy-
namic analysis using the flat shell element plays a major role in determining the displacements which are
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analogous to the real behavior of the box girders. As we described earlier, since many of the highway
bridges are deteriorating due to faster vehicles and overloading, more accurate dynamic analysis standards
which consider various factors for highway bridges are required.
6. Summary and conclusion

In this paper, a dynamic analysis using folded flat shell elements is carried out to study the dynamic
behaviors in various locations of a continuous two-span box girder bridge subjected to moving loads.
For the numerical analysis, we developed a finite element computer program using 6 degrees of freedom
per a node for the box girder bridge considering moving load effects. In order to verify the numerical anal-
ysis, we have carried out dynamic experiments for real structures, and the results obtained were in good
agreement with those computed using the numerical methods. The dynamic characteristics of a two-span
box girder bridge subjected to moving loads are analyzed by considering various parameters, especially
at different locations across the cross-section. The current standard specifications for highway bridge is
not enough to determine accurately the complicated dynamic effects for long-span box girder bridges. In
particular, because the dynamic behavior of a bridges subjected to moving loads depend on the locations
across the section, velocities of moving load, weight of vehicles, and the bridge type, more detailed stan-
dards that consider such various factors are required. It may be concluded from this study that the dynamic
effects for different locations on the cross-section, largely governing the behavior of box girder structures
subjected to moving loads, should not be neglected and thus the three-dimensional models using folded flat
shell elements should be used to analyze such structures for better accuracy.
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